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Abstract 

 
eTPU is a state-of-the-art timing co-processor unit 

that aims to relief I/O processing in new advanced 
microcontroller units. It has characteristics of both a 
peripheral and a processor, which are tightly 
integrated, requiring a verification strategy that covers 
equally well both of these roles. This paper discusses 
the formal verification effort of some specific eTPU 
features. For newer versions of eTPU, some complexity 
increasing showed to be suitable for a formal 
verification approach. Formal Verification was now 
applied to verify recently added complex features. This 
approach is then compared with a simulation-only 
approach adopted earlier.  

Index Terms— eTPU, VC Verification, timing co-
processor, functional verification, formal verification 
 
1. Introduction 
 

The increasing complexity of designs brings 
challenges to engineers to fully verify and assure 
design meets specification requirements. In some cases, 
alternative functional verification approaches showed 
to be a good choice to reduce development cycle time, 
and time-to-market. The complete eTPU verification 
effort was previously described in [1]. In that work, the 
possibility of using Formal Verification techniques was 
identified for some eTPU sub-blocks, including eTPU 
channels, whose formal verification effort is discussed 
here. 

Design complexity brings a wide range of states to 
be exercised, which causes a time-consuming task of 
generating and checking such states, and an additional 
effort to assure acceptable coverage metrics so the 
design could be considered fully verified and matching 
the specification. 

Formal verification approach allows covering all 
possible states in the design since it runs a formal proof 
instead of simulation. Once the formal proof assures a 

statement as true, the negation of such statement is 
considered impossible to be reached. 

This paper is organized as follows: after this 
introduction, a section which briefly describes previous 
works; a section which contains the formal verification 
environment; a section containing the case study itself; 
a section which shows experimental results, followed 
by a conclusion section. 

 
2. Previous work 
 

Functional verification aims to check design 
behavior against specification, in such a way to assure 
the design fully meets the specification, which contains 
all requirements and premises needed to have the 
design.[2] 
 
2.1. Simulation-based Verification on eTPU 
 

For the first version of eTPU, the verification effort 
was fully based on a reference model and a set of 
simulation stimuli, some of them directed and self-
checking, and some additional random stimuli [1]. 
Particularly for channel modes verification, a set of 
stimuli based on the channel behavior due to sequences 
of events (one stimulus for each mode) was developed, 
in a way that all possible sequence of the four events 
were simulated, and channel status  (flags and captured 
time bases) were checked after each event. 

In order to ease stimuli reuse and maintenance after 
potential specification changes, the stimuli for channel 
modes verification were developed in a way which the 
C code was updated through a script which was fed 
with a table containing the specified behavior for the 
channels in response to any sequence of events. This 
approach has proved to be very effective and it 
achieved a high level of coverage for channel mode 
verification on the first version of eTPU (eTPU 
architecture and channel modes are going to be 
described in section 4). 



This approach was not feasible for User Defined 
Channel Modes, since a set of directed stimuli to cover 
all possibilities would not be feasible. Random stimuli 
could also be a possibility, but it would require a 
considerable amount of simulation time and debug time 
over corner cases. 

Consequently, the case was identified as a suitable 
situation to try an assertion-based formal verification 
(ABV)[2] approach, a formal verification technique 
with assertions, which has been introduced and used for 
functional verification in the semiconductor industry 
over the last years, as in [3],[4], and [5].  

 
2.2. Assertion-based Formal Verification 
 

This approach allows the verification engineer to 
improve observability and controllability over the 
design, and let the corner cases to be sought and 
identified by the formal tool, since assertions are able 
to capture how design should operate. It means to have 
the specification translated into a formal language 
eliminating the need for exhaustive simulation. 

The formal verification tool synthesizes the block 
into a so-called formal model, and through the process 
of understanding the internal structure of the design, 
formal analysis reports whether the assertions are 
violated or not. This analysis provides an unbiased 
feedback on the design integrity. Static formal 
verification [6] uses mathematical techniques to prove 
some assertions as true (given a set of assumptions), 
and other assertions as false (by discovering 
counterexamples). A proof in this terms means that 
static formal verification has exhaustively explored all 
possible behavior regarding the assertion and has 
determined that it cannot be violated. A 
counterexample shows the specific circumstances (if 
any) under which the assertion is not satisfied.  

Considering the expertise and tool availability, the 
ABV approach chosen was to use the System Verilog   
Assertions (SVA) language and CadenceTM IFV tool 
for a static formal verification environment, in which it 
could have the channel design sub-block instantiated 
with assertions connected into its interface, so the 
formal model could be generated and specification-
based assertions could be proved. 

 
3. Proposed Formal Verification 
Environment 
 

The eTPU channel sub-block interfaces with several 
eTPU sub-blocks. However, for the purpose of the 
channel mode verification, the main focus was on the 

interface with two specific sub-blocks: the microengine 
and the time bases sub-blocks.  

In this case, the module implementing the channels 
is checked standalone, not embedded into the eTPU 
module. 

In formal verification terms, all module inputs for 
the DUV (device under verification) are handled as 
primary inputs by the formal analysis tool to freely 
drive these signals when trying to generate assertions 
proofs or counterexamples.  

 

 
Fig 1 Primary inputs 

 
Invalid combinations in channel inputs should be 

constrained so that the formal engine does not put 
channel into any invalid state (unreachable in a real 
situation). For instance, in terms of channel internal 
register programming, all write-enable signals should 
only be set active if a valid value (in terms of 
specification) is set to be written. In SVA terms: 

 
const_ipac1_valid: assume property (@(posedge clk) 
                     (me_ipac1_we) |-> (me_ipac1_wdata < 6)); 

 
What means me_ipac1_we – input signal for the 

channel block – should be active only when 
me_ipac1_wdata – another input – has a valid value, 
less than 6, as stated in the specification. In the real 
world, the microengine would never generate a 
combination of signals which would violate rules as 
this one. 

Also, some constraints were added to assure some 
specific configuration settings stay constant during 
formal proof. It does not mean different situations are 
not going to be covered, but it must be constant since 
design specification does not allow such configurations 
to be changed during channel operation. For example, 
considering a write operation in channel internal 
configuration registers TBS1 and TBS2 should never 
be performed: 



#Those two lines assure TBS1/2 registers can't change 
constraint -add -pin top.me_tbs1_we = 0 
constraint -add -pin top.me_tbs2_we = 0 

 
To assure all desirable states were reached, some 

cover statements were also added, so any available 
combination among channel flags should be reached. In 
SVA terms, being tdlx and mrly transition and match 
flags, respectively: 

 
cov_tdl1: cover property     (@(posedge clk) tdl1); 
cov_t1_m2: cover property (@(posedge clk) (tdl1 & mrl2));       

 
The first statement means that tdl1 is set some 

time during formal analysis, and that tdl1 and mrl2 
are set together some time during formal proof, in 
second case. Both signals are not directly set by the 
formal tool, since they are outputs from our DUV. That 
means formal tool should try changing its primary 
inputs to put our DUV in a state that obeys such 
conditions. A potential error is then reported if the 
condition cannot be obeyed. 

The DUV should be put in an initial state from 
which formal analysis will start to explore states in 
order to prove assertions. IFV provides an environment 
to drive some initial stimulus to simulate the DUV, 
using TCL [7] commands. The initialization allows to 
provide initial values for internal signals without reset 
values, and so avoid X’s being propagated in states to 
be checked by the formal analysis. Also, some input 
pins could be constrained to avoid undesired states, 
such an unexpected reset or an undesired change in an 
internal register in the DUV. 

An example of tcl commands sequence to put DUV 
in a ‘safe’ state is the following: 

 
# Initialize reset 
force top.ipg_hard_sync_reset_b  0 
force top.me_er1_wdata 24'b000000000000000000000000 
force top.me_er2_wdata 24'b000000000000000000000000 
 
#Run 10 clks to propagate reset 
run 10 
 
force top.ipg_hard_sync_reset_b  1 
… 
force top.me_tbs1_we 1 
force top.me_tbs2_we 1 
force top.me_tbs1_wdata 3'h0 
force top.me_tbs2_wdata 3'h7 
run 5 

 
The first block would generate a reset, and force 

some non-initialized signals to a known state. It runs 10 
time units so the DUV could effectively reset. The 

second block will release reset signal and then provide 
a safe write to registers which won’t change during 
formal analysis, and make it run for 5 time units more. 
This will be enough to put the DUV in a safe and 
known initial state. 
 
4. Case Study: eTPU  

 
The enhanced Time Processing Unit (eTPU) is an 

intelligent, semi-autonomous co-processor designed for 
I/O processing with timing control. Operating in 
parallel with the main microcontroller CPU, the eTPU 
processes instructions and real-time input events, 
performs output waveform generation, and accesses 
shared data without CPU intervention. Consequently, 
for each timed I/O event, the CPU setup and service 
times are minimized or eliminated. The I/O events are 
first processed by a configurable hardware logic named 
a channel. There is one channel for each I/O signal 
pair. A dedicated, Harvard architecture CPU (hereafter 
called microengine) processes requests that come from 
the channels. The microengine serves up to 32 
channels, which also share a pair of time-base counters 
used for input event timing and output timed event 
generation (see block diagram in Fig 1). The module 
formed by a microengine, the time bases, associated 
channel and support logic set is called an engine.  

 

 
Fig. 2 eTPU engine block diagram 

 
The eTPU works much like a typical real-time 

system: it runs microengine code from instruction 
memory to handle specific events while accessing data 
memory for parameters and application data. Events 
may originate from I/O Channels (due to pin transitions 
and/or time base matches), CPU requests or inter-
channel requests. Events that call for local eTPU 
processing activate the microengine by issuing a 



service request, which is a request for the microengine 
to execute some specific pre-loaded code. Some real-
time system functionalities, like task scheduling and 
context switch, are implemented in hardware for 
performance sake. 
 
4.1 eTPU channels 
 

eTPU channels comprise hardware support for input 
digital signal processing and output digital signal 
generation. Each channel is associated with one input 
and one output signal. Channels are capable of dual 
action, meaning that each channel logic can handle two 
events at different times and/or cause two separated 
actions - these actions and events can be mutually 
dependent (with the first either blocking or enabling the 
other), or both independent, depending on the 
programmed channel mode[8]. 

Each channel contains event logic containing two 
event register sets, each set supporting one input and/or 
output action, the pair implementing dual action 
support. Each event register set contains two 24-bit 
registers: Match and Capture. The Match register holds 
the pending match value which is compared against one 
of the two time bases by an equal-only/greater-equal 
comparator. The Capture register captures one of the 
two time bases as a result of a Match or Transition 
detection. Requests to run microcode (service requests) 
are issued on particular combination of match and 
capture events, defined by the selected Channel Mode. 

In the context of the eTPU channels an event could 
be either a match or a transition. A match is a 
comparison between a time base value and a channel 
match register value. A transition is a change in the 
input signal, which can be programmed to be detected 
or ignored. The dual-action characteristic of the 
channel defines then 4 different events: Match1, 
Match2, Transition1, and Transition2 (referred from 
now on as M1, M2, T1, and T2 for short). 

Channel modes configure how channel handles with 
event recognition and related actions, such as service 
requests, time base capture, and output pin action, or 
event detection enabling/disabling. In first released 
version of eTPU, in Freescale MPC5554 and reused in 
some other Freescale microcontrollers, there were 13 
pre-defined channel modes which could be described in 
terms of 8 internal signals, each one regarding a 
different channel behavior. They were: 

 
�  MSR (2 bits), which defines which match 

generates a service request; 
�  DTM (1 bit), defines time base capture and service 

request generated by transitions; 

�  MCAP (1 bit), defines time base captures issued 
by matches; 

�  M1ET (1 bit), defines if M1 enables transitions; 
�  M1EM2 (1 bit), defines if M1 enables M2; 
�  M1BM2 (1 bit), defines if M1 blocks M2; 
�  M2BM1 (1 bit), defines if M2 blocks M1; 
�  M2BT (1 bit), defines if M2 blocks transitions. 
 
In all modes, transitions are always ordered, what 

means that T1 always enables T2. Obviously, not all 
combinations of signals above are reachable in only 13 
channel modes. Verification of all these modes was 
then handled by a set of directed self-checking patterns, 
as will be described later. Also, besides the channel 
mode selection, there are others configuration items 
which could interfere on pin action and detection and 
also service request blocking, but these features were 
covered by a different set of directed patterns, not 
regarding channel mode handling. 

On latest eTPU implementations, a more flexible 
configuration scheme, named User Defined Channel 
Modes (UDCM), which allows each of the signals 
listed above to be set independently, and also adding 
some signals (TSR and TCAP replaced DTM bit 
described above):  

 
�  TSR (1 bit), which defines which transition 

generates a service request; 
�  TCAP (1 bit), which defines time base captures by 

transition detection; 
�  T1BM1 (1 bit), which defines if T1 blocks M1; 
�  T2BM1 (1 bit), which defines if T2 blocks M1; 
�  TBM2 (1 bit), which defines which  transition 

blocks M2; 
�  T1ET2 (1 bit), which defines transition ordering; 
 
As they could be set independently, we have 

potentially 213 different combinations, although some 
combinations make no sense (e.g., M1EM2 and 
M1BM2 set simultaneously), a lot of potential states 
and corner cases to be verified, therefore those new 
features were identified as candidates for formal 
verification. 
 
5. Experimental Results 
 

Assertions are, by definition, predicates (i.e. true-
false statements) which translate the properties 
specified for the design in such a way to describe the 
behavior. SVA is a System Verilog superset Property 
Specification Language [9], [10]. 

In our formal verification environment, assertions 
were developed focusing on internal signals which 



characterize the channel mode. During assertions 
coding and development, the debug effort was mainly 
focused on the creation and adjusting of constraints, 
since the assertions were almost copied directly from 
signals specification. For example, if signal M1EM2 is 
set, it means that M2 can’t be set if M1 was not set 
before. In SVA terms: 

 
assign no_mrl = !(chns_mrl1 || chns_mrl2); // aux code 
 
a_m1em2:   assert property (@(posedge clk) 
disable iff ((full_progr_mode===1'b1) & (m1em2!==1'b1)) 
                                        no_mrl |=> !chns_mrl2); 

 
This assertion would be disabled if m1em2 is not set 

in full programmable mode. If not in full 
programmable mode, the channel mode is in one of 
pre-defined modes, so this assertion is added only for 
modes which m1em2 is set, no disabling needed. The 
assertion itself is very simple, self-explained: if no mrl 
is set, mrl2 should never be set in the following clock 
cycle. It excludes situations where a sequence of events 
set mrl1, then mrl2 and then MRL1 is cleared. It 
leaves design on a valid state, but it may not be 
understood by the assertions if instead of ‘no_mrl’ we 
put ‘no_mrl1’, for example. 

The ‘disable iff’ clause may be difficult to 
debug in some cases as was observed during the 
assertion debug phase. Assertions appeared to be false, 
but analysis of the counterexample showed that it was a 
situation with a correct behavior, but the assertion was 
not protected from a specific situation, such as a 
microcode intervention concurrently with event 
detection, for instance. In this case a condition had to 
be added. 

About 44 property assertions were written to cover 
all possible situations to be checked regarding channel 
state, such as event flags, service request generation 
and time bases capturing. Additionally, 12 assertions 
were written to cover some specific situations which 
involve not only channel modes, but also some 
additional configuration registers which sets output pin 
actions due to events. There are two internal registers 
which handle output pin action, one for M1/T1 and 
other for M2/T2. When two simultaneous events take 
place, and each one of them is configured to a different 
pin action conflicting with each other, some kind of 
rule must take place to decide which action should 
prevail over the other. This rule is defined clearly in the 
specification, so additional assertions were written to 
check it. 

 
 

5.1. Bugs found and verification effectiveness 
 

The debug phase took most of the verification effort 
time. The assertion debug process had some iterations 
in order to refine the formal analysis, by tightening and 
loosing constraints – and eventually adding ‘disable 
iff’clauses – as needed to achieve both coverage 
metrics goals and assertions proofing. 

The formal verification effort payed off, finding one 
bug within a reasonable time window, before the eTPU 
IP was released. The bug was about output pin action 
prevailing depending on channel mode configuration. 

The formal tool was able to generate a sequence of 
events/signals which took the design into a state which 
violates one of the assertions got from the 
specification. The tool provides a waveform which 
such sequence, but probing only signals which are 
relevant to generate the sequence. This saves a lot of 
debugging effort as well. 

Overall, the task to have channel mode 
implementation fully verified took about 40% less 
effort than the estimated random simulation-based 
approach, considering that it would include the 
reference model update and debug to have the 
environment able to start running. 
 
6. Conclusions and future work 
 

Formal verification was found to be very effective 
for situations where increasing complexity causes 
simulation-based approach to be unfeasible. Assertions 
allow to easily translate specification into checking 
code, and additionally can provide coverage metrics to 
assure verification effectiveness. In the future, other 
eTPU sub-blocks like the microengine will also be 
considered for assertion-based formal verification. 

Scenarios which may bring an unmanageably large, 
uncountable set of states to be checked are potential 
candidates for static formal analysis as applied in this 
work. ALUs, on the other hand, may not be suitable for 
formal verification. Some interesting investigation and 
valuable contribution would be a benchmark to 
properly identify circuits which may be more 
appropriate to be verified with formal techniques. 

 
7. Acknowledgements 
 

The author would like to thank the microcontroller 
verification team at Freescale’s Brazil Semiconductor 
Technology Center, in special to Cesar Dueñas and 
Celso Brites, verification team manager and eTPU 
verification team leader, respectively, for the 
opportunities of trying innovative approaches; Walter 



Encinas and Victor Miranda for their valuable 
contributions to this work; Chris Komar, from Cadence 
Design Systems Inc., for his always useful support 
during this case execution and evaluation. 

 
8. References 
 
[1] Brites C, Rodrigues C, “Functional Verification of a 
Timing Co-Processor: A Case Study”, 6th IEEE Latin 
American Test Workshop, March 2005, Digest of Papers pp 
129-133 
[2] Encinas Jr. W.S, Duenas M. C.A, “Functional 
Verification in 8-bit Microcontrollers: A Case Study”, 
Microelectronic Technology and Device, 2001, Symposium 
on, Brazilian Microelectronics Society, 2001.  
[3] Sen, A.; Ogale, V.; Abadir, M.S.; “Predictive runtime 
verification of multi-processor SoCs in SystemC”, Design 
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE 
8-13 June 2008 Page(s):948 – 953 

[4] Kai-Hui Chang; Wei-Ting Tu; Yi-Jong Yeh; Sy-Yen 
Kuo; “A simulation-based temporal assertion checker for 
PSL”, Circuits and Systems, 2003. MWSCAS '03. 
Proceedings of the 46th IEEE International Midwest 
Symposium on; Volume 3,  27-30 Dec. 2003 Page(s):1528 – 
1531 
[5] Roy, S.K.; “Top Level SOC Interconnectivity 
Verification Using Formal Techniques”, Microprocessor Test 
and Verification, 2007. MTV '07. Eighth International 
Workshop on 5-6 Dec. 2007 Page(s):63 - 70 
[6] Yeoung P., “4 Pillars of ABV”, Euro DesignCon 2004 
[7] TCL Developer Site, http://www.tcl.tk/ 
[8] Freescale, Inc., “ETPU Reference Manual” [online], 
available at <http://www.freescale.com> 
[9] Property Specification Language (PSL) Reference 
Manual. [online], available: <http://www.eda.org>. 
[10] System Verilog language reference manual, IEEE STD 
1800-2005. 
 
 

 


