
A case study for formal verification of a Timing Co-Processor

Cristiano Rodrigues
Brazil Semiconductor Technology Center (BSTC) – Freescale Semiconductor Inc.

Cristiano.Rodrigues@freescale.com

Abstract

eTPU is a state-of-the-art timing co-processor unit

that aims to relief I/O processing in new advanced
microcontroller units. It has characteristics of both a
peripheral and a processor, which are tightly
integrated, requiring a verification strategy that covers
equally well both of these roles. This paper discusses
the formal verification effort of some specific eTPU
features. For newer versions of eTPU, some complexity
increasing showed to be suitable for a formal
verification approach. Formal Verification was now
applied to verify recently added complex features. This
approach is then compared with a simulation-only
approach adopted earlier.

Index Terms— eTPU, VC Verification, timing co-
processor, functional verification, formal verification

1. Introduction

The increasing complexity of designs brings
challenges to engineers to fully verify and assure
design meets specification requirements. In some cases,
alternative functional verification approaches showed
to be a good choice to reduce development cycle time,
and time-to-market. The complete eTPU verification
effort was previously described in [1]. In that work, the
possibility of using Formal Verification techniques was
identified for some eTPU sub-blocks, including eTPU
channels, whose formal verification effort is discussed
here.

Design complexity brings a wide range of states to
be exercised, which causes a time-consuming task of
generating and checking such states, and an additional
effort to assure acceptable coverage metrics so the
design could be considered fully verified and matching
the specification.

Formal verification approach allows covering all
possible states in the design since it runs a formal proof
instead of simulation. Once the formal proof assures a

statement as true, the negation of such statement is
considered impossible to be reached.

This paper is organized as follows: after this
introduction, a section which briefly describes previous
works; a section which contains the formal verification
environment; a section containing the case study itself;
a section which shows experimental results, followed
by a conclusion section.

2. Previous work

Functional verification aims to check design
behavior against specification, in such a way to assure
the design fully meets the specification, which contains
all requirements and premises needed to have the
design.[2]

2.1. Simulation-based Verification on eTPU

For the first version of eTPU, the verification effort
was fully based on a reference model and a set of
simulation stimuli, some of them directed and self-
checking, and some additional random stimuli [1].
Particularly for channel modes verification, a set of
stimuli based on the channel behavior due to sequences
of events (one stimulus for each mode) was developed,
in a way that all possible sequence of the four events
were simulated, and channel status (flags and captured
time bases) were checked after each event.

In order to ease stimuli reuse and maintenance after
potential specification changes, the stimuli for channel
modes verification were developed in a way which the
C code was updated through a script which was fed
with a table containing the specified behavior for the
channels in response to any sequence of events. This
approach has proved to be very effective and it
achieved a high level of coverage for channel mode
verification on the first version of eTPU (eTPU
architecture and channel modes are going to be
described in section 4).

This approach was not feasible for User Defined
Channel Modes, since a set of directed stimuli to cover
all possibilities would not be feasible. Random stimuli
could also be a possibility, but it would require a
considerable amount of simulation time and debug time
over corner cases.

Consequently, the case was identified as a suitable
situation to try an assertion-based formal verification
(ABV)[2] approach, a formal verification technique
with assertions, which has been introduced and used for
functional verification in the semiconductor industry
over the last years, as in [3],[4], and [5].

2.2. Assertion-based Formal Verification

This approach allows the verification engineer to
improve observability and controllability over the
design, and let the corner cases to be sought and
identified by the formal tool, since assertions are able
to capture how design should operate. It means to have
the specification translated into a formal language
eliminating the need for exhaustive simulation.

The formal verification tool synthesizes the block
into a so-called formal model, and through the process
of understanding the internal structure of the design,
formal analysis reports whether the assertions are
violated or not. This analysis provides an unbiased
feedback on the design integrity. Static formal
verification [6] uses mathematical techniques to prove
some assertions as true (given a set of assumptions),
and other assertions as false (by discovering
counterexamples). A proof in this terms means that
static formal verification has exhaustively explored all
possible behavior regarding the assertion and has
determined that it cannot be violated. A
counterexample shows the specific circumstances (if
any) under which the assertion is not satisfied.

Considering the expertise and tool availability, the
ABV approach chosen was to use the System Verilog
Assertions (SVA) language and CadenceTM IFV tool
for a static formal verification environment, in which it
could have the channel design sub-block instantiated
with assertions connected into its interface, so the
formal model could be generated and specification-
based assertions could be proved.

3. Proposed Formal Verification
Environment

The eTPU channel sub-block interfaces with several
eTPU sub-blocks. However, for the purpose of the
channel mode verification, the main focus was on the

interface with two specific sub-blocks: the microengine
and the time bases sub-blocks.

In this case, the module implementing the channels
is checked standalone, not embedded into the eTPU
module.

In formal verification terms, all module inputs for
the DUV (device under verification) are handled as
primary inputs by the formal analysis tool to freely
drive these signals when trying to generate assertions
proofs or counterexamples.

Fig 1 Primary inputs

Invalid combinations in channel inputs should be

constrained so that the formal engine does not put
channel into any invalid state (unreachable in a real
situation). For instance, in terms of channel internal
register programming, all write-enable signals should
only be set active if a valid value (in terms of
specification) is set to be written. In SVA terms:

const_ipac1_valid: assume property (@(posedge clk)
 (me_ipac1_we) |-> (me_ipac1_wdata < 6));

What means me_ipac1_we – input signal for the

channel block – should be active only when
me_ipac1_wdata – another input – has a valid value,
less than 6, as stated in the specification. In the real
world, the microengine would never generate a
combination of signals which would violate rules as
this one.

Also, some constraints were added to assure some
specific configuration settings stay constant during
formal proof. It does not mean different situations are
not going to be covered, but it must be constant since
design specification does not allow such configurations
to be changed during channel operation. For example,
considering a write operation in channel internal
configuration registers TBS1 and TBS2 should never
be performed:

#Those two lines assure TBS1/2 registers can't change
constraint -add -pin top.me_tbs1_we = 0
constraint -add -pin top.me_tbs2_we = 0

To assure all desirable states were reached, some

cover statements were also added, so any available
combination among channel flags should be reached. In
SVA terms, being tdlx and mrly transition and match
flags, respectively:

cov_tdl1: cover property (@(posedge clk) tdl1);
cov_t1_m2: cover property (@(posedge clk) (tdl1 & mrl2));

The first statement means that tdl1 is set some

time during formal analysis, and that tdl1 and mrl2
are set together some time during formal proof, in
second case. Both signals are not directly set by the
formal tool, since they are outputs from our DUV. That
means formal tool should try changing its primary
inputs to put our DUV in a state that obeys such
conditions. A potential error is then reported if the
condition cannot be obeyed.

The DUV should be put in an initial state from
which formal analysis will start to explore states in
order to prove assertions. IFV provides an environment
to drive some initial stimulus to simulate the DUV,
using TCL [7] commands. The initialization allows to
provide initial values for internal signals without reset
values, and so avoid X’s being propagated in states to
be checked by the formal analysis. Also, some input
pins could be constrained to avoid undesired states,
such an unexpected reset or an undesired change in an
internal register in the DUV.

An example of tcl commands sequence to put DUV
in a ‘safe’ state is the following:

Initialize reset
force top.ipg_hard_sync_reset_b 0
force top.me_er1_wdata 24'b000000000000000000000000
force top.me_er2_wdata 24'b000000000000000000000000

#Run 10 clks to propagate reset
run 10

force top.ipg_hard_sync_reset_b 1
…
force top.me_tbs1_we 1
force top.me_tbs2_we 1
force top.me_tbs1_wdata 3'h0
force top.me_tbs2_wdata 3'h7
run 5

The first block would generate a reset, and force

some non-initialized signals to a known state. It runs 10
time units so the DUV could effectively reset. The

second block will release reset signal and then provide
a safe write to registers which won’t change during
formal analysis, and make it run for 5 time units more.
This will be enough to put the DUV in a safe and
known initial state.

4. Case Study: eTPU

The enhanced Time Processing Unit (eTPU) is an

intelligent, semi-autonomous co-processor designed for
I/O processing with timing control. Operating in
parallel with the main microcontroller CPU, the eTPU
processes instructions and real-time input events,
performs output waveform generation, and accesses
shared data without CPU intervention. Consequently,
for each timed I/O event, the CPU setup and service
times are minimized or eliminated. The I/O events are
first processed by a configurable hardware logic named
a channel. There is one channel for each I/O signal
pair. A dedicated, Harvard architecture CPU (hereafter
called microengine) processes requests that come from
the channels. The microengine serves up to 32
channels, which also share a pair of time-base counters
used for input event timing and output timed event
generation (see block diagram in Fig 1). The module
formed by a microengine, the time bases, associated
channel and support logic set is called an engine.

Fig. 2 eTPU engine block diagram

The eTPU works much like a typical real-time

system: it runs microengine code from instruction
memory to handle specific events while accessing data
memory for parameters and application data. Events
may originate from I/O Channels (due to pin transitions
and/or time base matches), CPU requests or inter-
channel requests. Events that call for local eTPU
processing activate the microengine by issuing a

service request, which is a request for the microengine
to execute some specific pre-loaded code. Some real-
time system functionalities, like task scheduling and
context switch, are implemented in hardware for
performance sake.

4.1 eTPU channels

eTPU channels comprise hardware support for input
digital signal processing and output digital signal
generation. Each channel is associated with one input
and one output signal. Channels are capable of dual
action, meaning that each channel logic can handle two
events at different times and/or cause two separated
actions - these actions and events can be mutually
dependent (with the first either blocking or enabling the
other), or both independent, depending on the
programmed channel mode[8].

Each channel contains event logic containing two
event register sets, each set supporting one input and/or
output action, the pair implementing dual action
support. Each event register set contains two 24-bit
registers: Match and Capture. The Match register holds
the pending match value which is compared against one
of the two time bases by an equal-only/greater-equal
comparator. The Capture register captures one of the
two time bases as a result of a Match or Transition
detection. Requests to run microcode (service requests)
are issued on particular combination of match and
capture events, defined by the selected Channel Mode.

In the context of the eTPU channels an event could
be either a match or a transition. A match is a
comparison between a time base value and a channel
match register value. A transition is a change in the
input signal, which can be programmed to be detected
or ignored. The dual-action characteristic of the
channel defines then 4 different events: Match1,
Match2, Transition1, and Transition2 (referred from
now on as M1, M2, T1, and T2 for short).

Channel modes configure how channel handles with
event recognition and related actions, such as service
requests, time base capture, and output pin action, or
event detection enabling/disabling. In first released
version of eTPU, in Freescale MPC5554 and reused in
some other Freescale microcontrollers, there were 13
pre-defined channel modes which could be described in
terms of 8 internal signals, each one regarding a
different channel behavior. They were:

� MSR (2 bits), which defines which match

generates a service request;
� DTM (1 bit), defines time base capture and service

request generated by transitions;

� MCAP (1 bit), defines time base captures issued
by matches;

� M1ET (1 bit), defines if M1 enables transitions;
� M1EM2 (1 bit), defines if M1 enables M2;
� M1BM2 (1 bit), defines if M1 blocks M2;
� M2BM1 (1 bit), defines if M2 blocks M1;
� M2BT (1 bit), defines if M2 blocks transitions.

In all modes, transitions are always ordered, what

means that T1 always enables T2. Obviously, not all
combinations of signals above are reachable in only 13
channel modes. Verification of all these modes was
then handled by a set of directed self-checking patterns,
as will be described later. Also, besides the channel
mode selection, there are others configuration items
which could interfere on pin action and detection and
also service request blocking, but these features were
covered by a different set of directed patterns, not
regarding channel mode handling.

On latest eTPU implementations, a more flexible
configuration scheme, named User Defined Channel
Modes (UDCM), which allows each of the signals
listed above to be set independently, and also adding
some signals (TSR and TCAP replaced DTM bit
described above):

� TSR (1 bit), which defines which transition

generates a service request;
� TCAP (1 bit), which defines time base captures by

transition detection;
� T1BM1 (1 bit), which defines if T1 blocks M1;
� T2BM1 (1 bit), which defines if T2 blocks M1;
� TBM2 (1 bit), which defines which transition

blocks M2;
� T1ET2 (1 bit), which defines transition ordering;

As they could be set independently, we have

potentially 213 different combinations, although some
combinations make no sense (e.g., M1EM2 and
M1BM2 set simultaneously), a lot of potential states
and corner cases to be verified, therefore those new
features were identified as candidates for formal
verification.

5. Experimental Results

Assertions are, by definition, predicates (i.e. true-
false statements) which translate the properties
specified for the design in such a way to describe the
behavior. SVA is a System Verilog superset Property
Specification Language [9], [10].

In our formal verification environment, assertions
were developed focusing on internal signals which

characterize the channel mode. During assertions
coding and development, the debug effort was mainly
focused on the creation and adjusting of constraints,
since the assertions were almost copied directly from
signals specification. For example, if signal M1EM2 is
set, it means that M2 can’t be set if M1 was not set
before. In SVA terms:

assign no_mrl = !(chns_mrl1 || chns_mrl2); // aux code

a_m1em2: assert property (@(posedge clk)
disable iff ((full_progr_mode===1'b1) & (m1em2!==1'b1))
 no_mrl |=> !chns_mrl2);

This assertion would be disabled if m1em2 is not set

in full programmable mode. If not in full
programmable mode, the channel mode is in one of
pre-defined modes, so this assertion is added only for
modes which m1em2 is set, no disabling needed. The
assertion itself is very simple, self-explained: if no mrl
is set, mrl2 should never be set in the following clock
cycle. It excludes situations where a sequence of events
set mrl1, then mrl2 and then MRL1 is cleared. It
leaves design on a valid state, but it may not be
understood by the assertions if instead of ‘no_mrl’ we
put ‘no_mrl1’, for example.

The ‘disable iff’ clause may be difficult to
debug in some cases as was observed during the
assertion debug phase. Assertions appeared to be false,
but analysis of the counterexample showed that it was a
situation with a correct behavior, but the assertion was
not protected from a specific situation, such as a
microcode intervention concurrently with event
detection, for instance. In this case a condition had to
be added.

About 44 property assertions were written to cover
all possible situations to be checked regarding channel
state, such as event flags, service request generation
and time bases capturing. Additionally, 12 assertions
were written to cover some specific situations which
involve not only channel modes, but also some
additional configuration registers which sets output pin
actions due to events. There are two internal registers
which handle output pin action, one for M1/T1 and
other for M2/T2. When two simultaneous events take
place, and each one of them is configured to a different
pin action conflicting with each other, some kind of
rule must take place to decide which action should
prevail over the other. This rule is defined clearly in the
specification, so additional assertions were written to
check it.

5.1. Bugs found and verification effectiveness

The debug phase took most of the verification effort
time. The assertion debug process had some iterations
in order to refine the formal analysis, by tightening and
loosing constraints – and eventually adding ‘disable
iff’clauses – as needed to achieve both coverage
metrics goals and assertions proofing.

The formal verification effort payed off, finding one
bug within a reasonable time window, before the eTPU
IP was released. The bug was about output pin action
prevailing depending on channel mode configuration.

The formal tool was able to generate a sequence of
events/signals which took the design into a state which
violates one of the assertions got from the
specification. The tool provides a waveform which
such sequence, but probing only signals which are
relevant to generate the sequence. This saves a lot of
debugging effort as well.

Overall, the task to have channel mode
implementation fully verified took about 40% less
effort than the estimated random simulation-based
approach, considering that it would include the
reference model update and debug to have the
environment able to start running.

6. Conclusions and future work

Formal verification was found to be very effective
for situations where increasing complexity causes
simulation-based approach to be unfeasible. Assertions
allow to easily translate specification into checking
code, and additionally can provide coverage metrics to
assure verification effectiveness. In the future, other
eTPU sub-blocks like the microengine will also be
considered for assertion-based formal verification.

Scenarios which may bring an unmanageably large,
uncountable set of states to be checked are potential
candidates for static formal analysis as applied in this
work. ALUs, on the other hand, may not be suitable for
formal verification. Some interesting investigation and
valuable contribution would be a benchmark to
properly identify circuits which may be more
appropriate to be verified with formal techniques.

7. Acknowledgements

The author would like to thank the microcontroller
verification team at Freescale’s Brazil Semiconductor
Technology Center, in special to Cesar Dueñas and
Celso Brites, verification team manager and eTPU
verification team leader, respectively, for the
opportunities of trying innovative approaches; Walter

Encinas and Victor Miranda for their valuable
contributions to this work; Chris Komar, from Cadence
Design Systems Inc., for his always useful support
during this case execution and evaluation.

8. References

[1] Brites C, Rodrigues C, “Functional Verification of a
Timing Co-Processor: A Case Study”, 6th IEEE Latin
American Test Workshop, March 2005, Digest of Papers pp
129-133
[2] Encinas Jr. W.S, Duenas M. C.A, “Functional
Verification in 8-bit Microcontrollers: A Case Study”,
Microelectronic Technology and Device, 2001, Symposium
on, Brazilian Microelectronics Society, 2001.
[3] Sen, A.; Ogale, V.; Abadir, M.S.; “Predictive runtime
verification of multi-processor SoCs in SystemC”, Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE
8-13 June 2008 Page(s):948 – 953

[4] Kai-Hui Chang; Wei-Ting Tu; Yi-Jong Yeh; Sy-Yen
Kuo; “A simulation-based temporal assertion checker for
PSL”, Circuits and Systems, 2003. MWSCAS '03.
Proceedings of the 46th IEEE International Midwest
Symposium on; Volume 3, 27-30 Dec. 2003 Page(s):1528 –
1531
[5] Roy, S.K.; “Top Level SOC Interconnectivity
Verification Using Formal Techniques”, Microprocessor Test
and Verification, 2007. MTV '07. Eighth International
Workshop on 5-6 Dec. 2007 Page(s):63 - 70
[6] Yeoung P., “4 Pillars of ABV”, Euro DesignCon 2004
[7] TCL Developer Site, http://www.tcl.tk/
[8] Freescale, Inc., “ETPU Reference Manual” [online],
available at <http://www.freescale.com>
[9] Property Specification Language (PSL) Reference
Manual. [online], available: <http://www.eda.org>.
[10] System Verilog language reference manual, IEEE STD
1800-2005.

